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Abstract This article addresses the problem of computing the Gibbs distribution of a
Hamiltonian system that is subject to holonomic constraints. In doing so, we extend re-
cent ideas of Cancès et al. (M2AN 41(2), 351–389, 2007) who could prove a Law of Large
Numbers for unconstrained molecular systems with a separable Hamiltonian employing a
discrete version of Hamilton’s principle. Studying ergodicity for constrained Hamiltonian
systems, we specifically focus on the numerical discretization error: even if the continu-
ous system is perfectly ergodic this property is typically not preserved by the numerical
discretization. The discretization error is taken care of by means of a hybrid Monte-Carlo
algorithm that allows for sampling bias-free expectation values with respect to the Gibbs
measure independently of the (stable) step-size. We give a demonstration of the sampling
algorithm by calculating the free energy profile of a small peptide.

Keywords Molecular dynamics · Canonical ensemble · Hybrid Monte-Carlo · Holonomic
constraints · Free energy calculation

1 Introduction

Consider a system assuming configurations q ∈ Q with energy V (q). A standard problem in
statistical mechanics consists in computing the configuration average of an observable f (q)

with respect to the Gibbs distribution, i.e.,

Ef =
∫

f (q)μ(dq). (1.1)

Here μ(dq) denotes the Gibbs measure at temperature T > 0,

μ(dq) = 1

Z
exp(−βV (q)) dq, β = 1/T , (1.2)
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and

Z =
∫

exp(−βV (q)) dq (1.3)

is a normalization constant that normalizes the total probability to one.
Quite often the above problem is treated in the context of deterministic Hamiltonian

systems assuming states (q,p): Given a set of coordinates (q,p) = (q1, . . . , qn,p1, . . . , pn)

on the phase space T ∗Q ∼= Q × Rn, we suppose that the system’s energy is given by a
separable Hamiltonian of the form

H(q,p) = 1

2
〈p,p〉 + V (q). (1.4)

The energy H = K +V is the sum of kinetic and potential energy, where 〈·, ·〉 denotes usual
scalar product in Rn. (For convenience we have set the mass to unity.) For realistic, espe-
cially high-dimensional systems the integral in (1.1) is mostly not manageable by analytical
or numerical means, and therefore the ensemble average is typically approximated by a time
average over the solution curves of Hamilton’s equations

q̇ i = ∂H

∂pi

,

ṗi = ∂H

∂qi
.

(1.5)

Exchanging ensemble and time average assumes that the underlying dynamical process is
ergodic. Ergodicity, in turn, presupposes the existence of an invariant measure of the process.
As a matter of fact the canonical distribution ρ ∝ exp(−βH) is invariant under the Hamil-
tonian flow. That is, if we pick initial conditions that are distributed according to the prob-
ability law ρ, then all points along the solution curves of (1.5) will follow the same law.
Letting Eρ denote the expectation with respect to the canonical distribution it can be readily
checked that Ef = Eρf for any position-dependent observable f for which the integral in
(1.1) exists. However the system (1.5) has infinitely many invariant probability measures
(in fact every function of the Hamiltonian gives rise to an invariant probability distribution).
Even worse, very few Hamiltonian systems are known to be ergodic at all, and the only can-
didates for ergodic invariant measures are singular with respect to the Lebesgue measure,
therefore excluding the possibility of sampling the smooth canonical distribution by a single
trajectory. Running many trajectories from ρ-distributed initial conditions instead is clearly
not an option: if we could generate initial conditions according to the high-dimensional
distribution ρ, there would not be any problem at all.

The Sampling Problem We shall call the task of computing the Gibbs distribution by sim-
ulating Hamilton’s equations the sampling problem. In statistical mechanics applications it
is frequently addressed by means of certain thermostatting techniques like Nosé-Hoover,
Berendsen or stochastic Andersen thermostats [1, 2]. Mostly these algorithms modify the
equations of motion in such a way that the dynamics samples the canonical density, pro-
vided the Hamiltonian flow is ergodic with respect to the microcanonical measure. This is a
very strong assumption, and it is well-known that the ordinary Nosé-Hoover thermostat suf-
fers from ergodicity problems for certain classes of Hamiltonians [3, 4]. This pathology can
be removed by employing extensions to the single-oscillator chain or by imposing constant
temperature constraints [5–7]. But even then, the sampling works well only if the dynamics
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is ergodic, and conditions to guarantee ergodicity are still lacking. Additionally all these
more sophisticated methods have in common that due to their complexity they are relatively
hard to implement, and they require a careful adjustment of the parameters involved. For
further details the interested reader is referred to the recent survey article [8].

Main Objective In this article we are going to follow an alternative route that is in the spirit
of Markov chain Monte-Carlo methods. It is based on the observation that one can systemat-
ically perturb the momentum component of the Hamiltonian trajectories (q(t),p(t)) ⊂ T ∗Q
during the course of integration, such that the configuration component samples the Gibbs
distribution with probability one (the momentum distribution becomes completely uncon-
trollable though). The approach follows the work of Schütte [9] who constructs a stochastic
Hamiltonian system by averaging out the momenta from the associated time-discrete trans-
fer operator. This generates a discrete diffusion-like flow {q0, q1, q2, . . .} on configuration
space that can be shown to be ergodic with respect to the Gibbs measure in the sense that
the Law of Large Numbers

1

N

N−1∑
k=0

f (qk) → Ef as N → ∞ (1.6)

holds true for almost all initial conditions (q0,p0) = (q(0),p(0)). Conditions on the nu-
merical flow map that guarantee ergodicity if the Hamiltonian is of the form (1.4) are due
to Schütte [9] and Cancès et al. [10] and will be briefly discussed in the next section. The
objective of the present work is to extend their ideas to more general classes of Hamilto-
nians, namely, systems on manifolds and systems with holonomic constraints. In doing so,
we develop an ergodic hybrid Monte-Carlo realization of the stochastic Hamiltonian system
that allows for sampling the Gibbs measure on a given configuration submanifold.

2 Stochastic Hamiltonian Systems

We start by considering an unconstrained natural Hamiltonian system with a Hamiltonian
function of the form (1.4). To this end we let �τ : T ∗Q → T ∗Q denote the flow of Hamil-
ton’s equations for a fixed integration time τ > 0. Let further π : (q,p) �→ q be the natural
bundle projection of a phase space vector onto its position component. We introduce a sto-
chastic Hamiltonian flow as iterates of the map

qk+1 = (π ◦ �τ)(qk,pk) (2.1)

with pk randomly chosen according to the Maxwell distribution

�(p) ∝ exp(−βK(p)), K(p) = 1

2
〈p,p〉.

2.1 Two Approaches Towards Ergodicity

The iteration (2.1) defines the time-discrete Markov process on Q. If the (discrete)
Hamiltonian flow �τ is exactly energy-preserving with invariant probability measure ρ ∝
exp(−βH), it is easy to show that the natural invariant measure of the stochastic flow is
the Gibbs measure μ ∝ exp(−βV ) which is simply the marginal distribution of ρ. In the
following we discuss sufficient conditions for the ergodicity of (2.1); matters of energy-
preservation and numerical approximations of the flow �τ will be mentioned at the end of
this section.
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Mixing and Momentum-Invertibility In [9], Schütte states a Law of Large Numbers for
stochastic Hamiltonian flows that relies on what he calls mixing and momentum-invertibility
conditions. Therein the following definition is given:

Definition 2.1 The stochastic Hamiltonian flow is called mixing, iff for every pair of open
subsets B,C ⊂ Q there is a n0 ∈ N, such that

∫
B

T nχC(q)μ(dq) > 0 ∀n > n0,

where χC(·) is the characteristic function of C ⊂ Q and

T u(q) =
∫

Rn

(u ◦ π ◦ �τ)(q,p)�(dp)

is the discrete transition (Koopman) operator T : L1 → L1.

We need yet another definition.

Definition 2.2 The Hamiltonian flow �τ is momentum-invertible on sets of positive mea-
sure with respect to the Maxwell distribution, iff the following two conditions are met:

1. For almost every q ∈ Q the function Fq(p) = (π ◦ �τ)(q,p) is locally invertible, i.e.,
there is an open set U ⊂ TqQ, such that det DFq(p) �= 0 for all p ∈ U .

2. There is a constant c > 0 such that

ess-inf
q∈Q

∫
U

�(dp) = c.

The mixing property should be distinguished from the usual definition in dynamical sys-
tems. Here mixing amounts to the accessibility of any open set of configurations with posi-
tive probability. The second property guarantees that the measure of initial conditions from
which the accessible configuration space can be reached is non-zero. We have:

Proposition 2.3 (Schütte 1998) Given τ > 0, let the Hamiltonian flow �τ be momentum-
invertible and mixing with invariant probability measure ρ. Then, the process (2.1) is ergodic
with respect to the Gibbs measure μ, i.e.,

1

N

N−1∑
k=0

f (qk) → Ef as N → ∞ (almost surely)

for almost all initial conditions q0 ∈ Q, where f ∈ L1(μ) is measurable.

Accessibility and Irreducibility In practice the above mixing and invertibility condition
are difficult to check. Moreover it is not clear whether both conditions are indeed necessary.
As a remedy for this problem the authors of [10] prove an ergodicity result for stochastic
Hamiltonian systems with an energy of the form (1.4) that does not rely on these conditions
but is based on the irreducibility of the associated time-discrete Markov process. In doing do,
they employ a discrete version of Hamilton’s principle to explicitly construct an integrator
that satisfies an accessibility condition that is a necessary condition for irreducibility. By
accessibility the following is meant:
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Definition 2.4 Let {qk}k∈N be a time-discrete Markov process on Q. For any q, q ′ ∈ Q

there exists an open neighbourhood C ⊂ Q of q ′ such that the process has a strictly positive
transition kernel, i.e., the transition probability satisfies

P[qk+1 ∈ C |qk = q] > 0,

where

P[qk+1 ∈ C |qk = q] =
∫

Rn

χC((π ◦ �τ)(qk,p))�(p)dp.

The idea of the proof is to show that we can always find a (discrete) flow map con-
necting q with a point in the open set B . For the Hamiltonian (1.4) the flow map is given
by iterations of the Verlet algorithm and is obtained as the stationary solution of a discrete
variational principle. Irreducibility of the stochastic Hamiltonian system further requires the
accessibility, not only of open sets, but of arbitrary Borel sets. The Law of Large Numbers
then reads:

Proposition 2.5 (Meyn & Tweedie 1993, Tierney 1994) Let (2.1) be a Markov process
with invariant probability measure μ. Assume further that the process is irreducible, i.e., its
transition probabilities satisfy

P[qk+1 ∈ B |qk = q] > 0 ∀q ∈ U ⊆ Q, ∀B ⊆ B(U),

where B(U) is the Borel σ -algebra of U ⊆ Q, and B ⊆ B(U) has positive Lebesgue mea-
sure. Then, for any measurable function f ∈ L1(μ), we have

1

N

N−1∑
k=0

f (qk) → Ef as N → ∞ (almost surely)

for almost all initial conditions q0 ∈ Q.

Irreducibility of the Markov process asks for a certain degree of regularity of the transi-
tion kernel, thereby imposing regularity conditions on the Hamiltonian vector field. We refer
to Sect. 4.1.2 for the details concerning irreducibility.

So far it is not clear how irreducibility relates to mixing and momentum-invertibility
conditions, and we are not going to answer this question here. Nonetheless it is the major
advantage of Cancès’ approach (i.e., using Hamilton’s principle to construct an irreducible
stochastic Hamiltonian system) that it can be easily extended to various classes of Hamilto-
nians.

For this reason we will take up their ideas in Sect. 4, where we construct an ergodic
stochastic Hamiltonian flow that samples the Gibbs distribution on a given configuration
submanifold.

2.2 Discretization Issues and Monte-Carlo Realization

Stochastic Hamiltonian systems generate a diffusion-like flow on Q. In point of fact, it has
been shown [11] that for sufficiently small (i.e., stable) time step τ the Euler-Maruyama
discretization of the Itô stochastic differential equation

dX(t) = −∇V (X(t))dt +
√

2

β
dW(t), X(0) = q0 (2.2)
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is an instance of the iteration (2.1), if �τ is chosen to be the single-step Verlet integrator.
The Euler-Maruyama scheme for (2.2) reads

Xn+1 = Xn − τ∇V (Xn) +
√

2τ

β
ξn, X0 = q0,

where ξn ∼ N (0,1) is a Gaussian random variable with mean zero and unit variance. (No-
tice that ξn replaces the random momentum.) Ergodicity results for discretized stochastic
differential equations are rare; even worse, it has been demonstrated [12, 13] that the Euler-
Maruyama discretization does not preserve ergodicity, if the vector field ∇V is not globally
Lipschitz continuous.

In [9], it was demonstrated that mixing and momentum-invertibility conditions hold true,
if the Hamiltonian flow �τ is approximated by the Verlet integrator for a Hamiltonian of the
form (1.4). A similar result regarding irreducibility of the corresponding Markov process
was stated in [10]. This, however, does not guarantee that the system is ergodic as follows
from the correspondence with the Euler-discretized stochastic differential equation. The rea-
son is that the Verlet algorithm does not exactly preserve the total energy H , but rather a
so-called shadow Hamiltonian H̃ = H + O(τ 2). Therefore a realization of the stochastic
Hamiltonian system will most probably sample the marginal distribution of ρ̃ ∝ exp(−βH̃ )

rather than the correct Gibbs density μ.
At this stage hybrid Monte-Carlo (HMC) as an algorithmic realization of the stochastic

Hamiltonian system comes into play: HMC emulates the general Metropolis Monte-Carlo
strategy of proposal and acceptance steps, where the proposal is generated by short runs
of the numerical integrator with randomly chosen initial conditions. The acceptance pro-
cedure controls the numerical energy error, because it rejects those moves that have too
large energy fluctuations. In connection with numerical short-time integration of the under-
lying Hamiltonian system, HMC moreover circumvents the common Monte-Carlo problem,
namely, that the acceptance probability for an arbitrary random move to an energetically
unfavourable state becomes incredibly small [14]. HMC is conceptually very simple (as is
ordinary Metropolis Monte-Carlo) and is designed to be used with symplectic integrators
such as the Verlet algorithm. In fact, it has been demonstrated in [9] and [15] that HMC for
a Hamiltonian system with a separable Hamiltonian of the form (1.4) indeed preserves the
correct Gibbs measure μ. In Sect. 4 we will generalize the available results to the numerical
integration of constrained Hamiltonian systems or systems on manifolds.

We should mention yet another approach [16] that is based on what the authors call
approximate controllability. The idea exploits an analogy with controllable (or reachable)
states in control theory, where the continuous control variable is replaced by the realizations
of a white noise process acting on the momenta. Although the authors state ergodicity only
for the exact solution of a sliding disc, the ansatz is promising as controllability is a well
studied concept also for time-discrete control problems (see, e.g., [17]). Basic work in this
direction by the same authors is [18].

3 Constrained Systems

In actual simulations the Hamiltonian system is often subject to certain configuration (i.e.,
holonomic) constraints, and we denote by � ⊂ Q the submanifold of admissible configu-
rations. In this case the task of computing the expectation (1.1) with respect to the Gibbs
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measure changes according to

E�f =
∫

�

f (q)μ�(dq),

where μ� is the Gibbs measure restricted to the set � of admissible configurations. Instances
of constrained sampling problems are manifold, e.g., in molecular dynamics: thermody-
namic integration methods for rare events [19, 20], rigid-body dynamics in quaternions [21]
or best-approximations of molecular systems [22] to mention just a few (see Sect. 5 for fur-
ther details). Before we address the constrained sampling problem in detail we shall briefly
review the basic properties of constrained mechanical systems.

3.1 Introducing Holonomic Constraints

In treating holonomic constraints it is most convenient to start within the framework of
Lagrangian mechanics. Let the function

L(q, q̇) = 1

2
〈q̇, q̇〉 − V (q)

be the Lagrangian associated with our Hamiltonian system (1.4). For our purposes it suffices
to define a holonomic constraint � ⊂ Q by specifying a smooth function ϕ : Q → Rs , such
that � = ϕ−1(0) is the zero level set of ϕ. If the Jacobian Dϕ(q) has maximum rank s on �,
then � is a proper submanifold of codimension s in Q. Together with the natural inclusion
T � ⊂ T Q this determines the state space of the constrained system. The tangent space to
q ∈ � is then defined in the usual way considering the direction of curves in � which is
equivalently expressed as

Tq� = {v ∈ TqQ |Dϕ(q)T · v = 0}.
Without loss of generality we may assume that � has codimension s = 1 in Q. We can
now easily define a constrained Lagrangian by restricting the original one to the constrained
tangent space T � ⊂ T Q. An alternative (and more common) way is to define an augmented
Lagrangian

L̂(q, q̇, λ) = L(q, q̇) − λϕ(q).

Note that the thus defined Lagrangian is not strictly convex in the velocities, for it does not
contain the velocity dλ/dt . Hence defining a constrained Hamiltonian makes no sense at the
moment. Nevertheless we can compute the stationary solution (not necessarily a minimum)
of the action functional, viz.,

δ

∫ b

a

(L(q(t), q̇(t)) − λ(t)ϕ(q(t))) dt = 0,

where the endpoints q(a) and q(b) both satisfy the constraint. From this we obtain the
Euler-Lagrange equations in the unknowns q and λ,

d

dt

∂L̂

∂q̇i
= ∂L̂

∂qi
,

0 = ∂L̂

∂λ
.

(3.1)
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Evidently, the second equation is simply the constraint ϕ(q) = 0. The alternative method
by restricting the original Lagrangian to T � amounts to endowing � with an appropriate set
of local coordinates (x1, . . . , xd) with d = n − 1, writing up the Lagrangian in these coordi-
nates, and deriving local Euler-Lagrange equations. According to the theorem on Lagrange
multipliers [23] the local Euler-Lagrange equations are equivalent to (3.1). We refer to the
latter as ambient-space formulation which is by far the most common formulation when it
comes to the numerical issues [24]; further details regarding numerical discretization will
be discussed in the Sects. 4 and 5.

3.2 Constrained Hamiltonian Systems

The transition from a Lagrangian to a Hamiltonian formulation in ambient-space repre-
sentation is not straightforward as the augmented Lagrangian is not strictly convex in the
velocities (λ̇ = dλ/dt is missing). Yet we can formally define the conjugate momentum to
the constrained variable q by

pi = ∂L̂

∂q̇i
.

This is the former unconstrained momentum p. If we restrict the Legendre transform Ĥ =
〈q̇, p〉 − L̂ to the set defined by the condition

0 = ∂L̂

∂λ̇
,

we can derive a Hamiltonian Ĥ pretending that L̂ is strictly convex. This yields

Ĥ (q,p,λ) = H(q,p) + λϕ(q).

Clearly this Hamiltonian does not give an equation for λ in the usual way. Therefore the
evolution of the Lagrange multiplier is undetermined. Nevertheless, we obtain equations of
motion for the variables q and p,

q̇ i = ∂Ĥ

∂pi

,

ṗi = −∂Ĥ

∂qi
, (3.2)

0 = −∂Ĥ

∂λ
,

that are equivalent to the Euler-Lagrange equations (3.1) modulo the restriction ∂L̂/∂λ̇ = 0.
All trajectories lie on the constrained phase space

B = {(q,p) ∈ T ∗Q | q ∈ � and 〈∇ϕ(q),DpH(q,p)〉 = 0},
where H is the unconstrained Hamiltonian (1.4), and Dp denotes the derivative with respect
to the momenta. It suffices to say that the constrained phase space is the image of the Legen-
dre transform of (T Q)|T � which will be identified with T ∗� in what follows. Note that the
momentum constraint 〈∇ϕ(q),DpH(q,p)〉 = 0 equals the equality ϕ̇(q) = 0. It is typically
referred to as hidden constraint, as it does not appear explicitly in the equations of motion.
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3.3 Ensembles of Constrained Systems

Let us briefly revisit the problem of relating the Gibbs measure to the canonical distribu-
tion of a Hamiltonian system. The constrained Hamiltonian system defined by (3.2) inherits
all basic properties of the unconstrained one: its flow reversibly, symplectic and energy-
preserving, if it is considered on the constrained phase space B. In particular, the energy of
the constrained system is the Hamiltonian H restricted to B. Hence the constrained canon-
ical distribution is simply the restriction of the unconstrained distribution ρ ∝ exp(−βH),
i.e.,

νB = 1

ZB
exp(−βHB) dλB .

Here HB = H |B , and dλB is the Liouville measure of B ⊂ T ∗Q; since B ∼= T ∗� is a sym-
plectic manifold, it is obtained in the standard way by taking exterior products of the con-
strained symplectic form that is obtained as the restriction of the unconstrained symplectic
form [25]. It is instructive to write down the local coordinate expression of νB : Let σ(x) be
an embedding of � into Q, and let local coordinates on � be denoted by x = (x1, . . . , xd).
Defining the conjugate momenta u in the usual way by ui = ∂L/∂ẋi , we obtain the local
coordinate expression for the Hamiltonian

HB = 1

2
G

ij

�(x)uiuj + V (σ(x)), (3.3)

where G� = G�(x) is the metric on � that is induced by the embedding � ⊂ Q. (The sum-
mation convention is in force, i.e., we sum over repeated upper and lower indices, and G

ij

�

denotes the entries of the inverse of G� .) In terms of the local coordinates the constrained
canonical distribution now becomes

νB(dx, du) = 1

ZB
exp(−βHB(x,u)) dxdu

with

ZB =
∫

Rd×Rd

exp(−βHB(x,u)) dxdu.

Here we encounter the same problem as without constraints: the invariant measure of the
system (3.2) is not unique, and the only ergodic measure, namely the microcanonical mea-
sure, is singular with respect to dλB . Repeating the argument from above, we introduce a
discrete stochastic constrained Hamiltonian system. For this purpose let �τ : B → B with
τ > 0 denote the flow generated by the constrained Hamiltonian HB . The stochastic system
can be defined as

xk+1 = (π ◦ �τ)(xk, uk), π : T ∗� → �, (3.4)

where uk is chosen randomly according to the constrained Maxwell distribution

�x(u) ∝ exp(−βK(x,u)), K(x,u) = 1

2
G

ij

�(x)uiuj . (3.5)

Following the reasoning of Sect. 2, we claim that the unique invariant measure of (3.4) is
the one which is obtained upon integrating the constrained canonical distribution νB over
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the momenta, i.e., the marginal distribution

∫
Rd

νB(·, du) = 1

Z�

exp(−βV (σ(x))) dσ (x),

where dσ(x) = √
detG�(x)dx is the surface element of � ⊂ Q, and

Z� =
∫

Rd

exp(−βV (σ(x))) dσ (x)

normalizes the total probability to one. Clearly the last two equations are nothing but the
unconstrained Gibbs measure (1.2) restricted to �. In other words, the restricted Gibbs
measure

μ�(dx) = 1

Z�

exp(−βV (σ(x))) dσ (x), (3.6)

is the natural invariant measure of the iteration (3.4). The next section is devoted to finding
a numerical Hamiltonian flow, such that the iteration map (3.4) is ergodic with respect to the
constrained Gibbs measure (3.6).

4 Constrained Hybrid Monte-Carlo

Consider the symplectic and reversible discrete numerical flow map �τ that is generated
by the constrained Hamiltonian (3.3), and consider iterates of �τ with initial momenta that
are randomly chosen according to the Maxwell distribution (5.4). This generates a sequence
{x0, . . . , xN−1} ⊂ Rd in configuration space.

If the flow �τ were exactly energy-preserving, then the xk would be distributed according
to μ� as given by (3.6). However it is impossible to find a numerical discretization scheme
that is symplectic, reversible, and exactly energy-conserving at once [26]; the best we can
achieve is that the energy error for a symplectic and reversible integrator remains uniformly
bounded on compact time intervals and oscillates around its exact value.

The HMC method accounts for this drawback by accepting or rejecting points with a
certain probability that depends on the energy error. Suppose we are at xk and integrate
up to time τ with a randomly chosen initial momentum uk ∼ �xk

(·). By this we generate
a Monte-Carlo proposal x̃k = (π ◦ �τ)(xk, uk), which is accepted (i.e., xk+1 = x̃k) with
probability

pτ (xk, uk) = min(1, exp(−β�HB(xk, uk; τ))), (4.1)

where

�HB(xk, uk; τ) = (HB ◦ �τ)(xk, uk) − HB(xk, uk) (4.2)

denotes the energy error. We reject the proposal (i.e., xk+1 = xk) with probability 1 − pτ .
Proceeding in this way, HMC generates a time-discrete Markov process {x1, . . . , xN } ⊂ Rd

that induces a Markov process on the constrained configuration space � ⊂ Q by virtue of
the embedding σ : Rd → �.
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4.1 Ergodicity of Constrained HMC

Our approach to prove ergodicity for the just defined constrained HMC Markov process
makes use of an idea of Cancès et al. [10] and rests upon the following strong Law of Large
Numbers that is due to [27, 28].

Proposition 4.1 (Meyn & Tweedie 1993, Tierney 1994) Let {xk}k∈N be a Markov process
on Rd with invariant probability measure μ� . If the process is irreducible, i.e., its transition
probabilities satisfy

P[xk+1 ∈ B |xk = x] > 0 ∀x ∈ U ⊆ Rd , ∀B ⊆ B(U), (4.3)

where B(U) is the Borel σ -algebra of U ⊆ Rd , and B ⊆ B(U) has positive Lebesgue mea-
sure, then the process obeys the strong Law of Large Numbers

lim
N→∞

1

N

N−1∑
i=0

f (σ(xi)) =
∫

Rd

f (σ (x))μ�(dx) (almost surely)

for almost all x0 ∈ Rd , where f ◦ σ ∈ L1(μ�) is a measurable function.

It is convenient to understand f as an observable that is defined on the original n-
dimensional configuration space Q, such that f ◦ σ denotes the restriction to � ⊂ Q. We
shall prove ergodicity of the constrained HMC Markov process by proving that it complies
with the assumptions of Theorem 4.1, namely,

1. it leaves the constrained Gibbs measure μ� invariant,
2. the process is irreducible, i.e., condition (4.3) is met.

4.1.1 Invariance of the Constrained Gibbs Measure

Invariance of the constrained Gibbs measure can be shown following the outline of the proof
in [15] for separable Hamiltonians. We cannot separate the canonical density into merely
momentum and position dependent parts; we have

νB(dx, du) = 1

ZB
exp(−βK(x,u))︸ ︷︷ ︸

�x(u)

exp(−βV (σ(x)))︸ ︷︷ ︸
η(x)

dxdu.

The notation ρx(u) indicates that the momentum density depends parametrically on the
position coordinates. It is easy to see that the HMC acceptance probability (4.1–4.2) for a
proposal step (x̃, ũ) = �τ(x,u) equals

pτ (x,u) = min

(
1,

�x̃(ũ)η(x̃)

�x(u)η(x)

)
, (4.4)

which coincides with the usual Metropolis-Hastings rule [29] for a symplectic and reversible
map �τ . Clearly we would have pτ = 1, if the proposal generating flow map �τ were exactly
energy-conserving. The following statement is due to the author [30].

Lemma 4.2 The constrained Gibbs measure μ� is invariant under the HMC flow that
is generated by a symplectic and reversible flow map �τ together with the Metropolis
acceptance-rejection procedure with acceptance probability (4.4).
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Proof It is sufficient to show that the HMC preserves expectation values with respect to
μ� . Let ζ ∈ Rd be an accepted position value after a single integration and acceptance step.
We assume that the initial momentum u is distributed according to �x(u). Furthermore, let
ϑ(dζ ) denote the marginal distribution of the position variables after one HMC step. Hence
we have to show that

∫
Rd

f (σ (x))μ�(dx) =
∫

Rd

f (σ (ζ ))ϑ(dζ ).

Suppose the initial positions x follow the marginal of νB . For each x we draw a momentum
vector from �x(u), and we propagate according to (x̃, ũ) = �τ(x,u). We can perform the
acceptance-rejection procedure for the rightmost expectation using a change-of-variables
argument. Exploiting that the constrained Liouville measure dλB is preserved under the
flow �τ , we obtain

∫
Rd

f (σ (ζ ))ϑ(dζ ) =
∫

Rd

f (σ (ζ ))pτ (�−τ (ζ, ũ)) ρ(�−τ (ζ, ũ)) dλB

+
∫

Rd

f (σ (ζ )) (1 − pτ (ζ,−ũ))ρ(ζ,−ũ) dλB,

where ρ(x,u) = �x(u)η(x) denotes the density of νB(dx, du) = ρ(x,u)dxdu. Note that
the first integral on the right hand side originates from the acceptance, the second one stems
from the rejection step. Taking advantage of the identity

pτ (�−τ (ζ, ũ)) ρ(�−τ (ζ, ũ)) = pτ (ζ,−ũ) ρ(ζ,−ũ),

using the reversibility �−τ (x,u) = �τ(x,−u) of the flow and the fact that the density
ρ(x,−u) = ρ(x,u) is even in its second argument, the last but one equation simplifies
according to

∫
Rd

f (σ (ζ ))ϑ(dζ ) =
∫

Rd

f (σ (ζ ))pτ (�−τ (ζ, ũ)) ρ(�−τ (ζ, ũ)) dλB

+
∫

Rd

f (σ (ζ )) (1 − pτ (ζ,−ũ))ρ(ζ,−ũ) dλB

=
∫

Rd

f (σ (ζ ))ρ(ζ, ũ) dλB

= 1

Z�

∫
Rd

f (σ (ζ ))η(ζ )
√

detG(ζ)dζ.

In the last equality we have integrated over the momenta. The assertion follows, observing
that the last equation is the expectation with respect to μ� . �

Remark 4.3 HMC gives a time-reversible mapping, as can be verified directly by checking
detailed balance for (x̃, ũ) = �τ(x,u):

ρ(x,u)pτ (x, x̃) = ρ(x,u)min

(
1,

ρ(x̃, ũ)

ρ(x,u)

)

= min(ρ(x̃, ũ), ρ(x,u))



An Ergodic Sampling Scheme for Constrained Hamiltonian Systems 699

= ρ(x̃, ũ)min

(
1,

ρ(x,u)

ρ(x̃, ũ)

)

= ρ(x̃, ũ)p−τ (x̃, x). (4.5)

The third equality is due to the symmetry with respect to the initial and propagated variables
in the second line. Hence HMC generates a reversible flow.

4.1.2 Irreducibility

To verify the irreducibility condition (4.3) we basically have to show that there is a discrete
flow map that connects any two points x(0) ∈ U ⊆ Rd and x(τ) ∈ B , where B ∈ B(U). To
this end we exploit an argument in the work of Cancès et al. [10], where the irreducibility
condition in case of an unconstrained, separable system has been proved. Therein the au-
thors use a discrete version of Hamilton’s principle assuming that the system is bounded,
i.e., either U ∼= Td (compact) or V ◦ σ is uniformly bounded from above. The boundedness
assumption is needed in order to guarantee existence of a discrete minimizer of the action
integral. Herein we do not assume that the (smooth) potential is bounded; instead we replace
this condition by the requirement that ‖x(0)−x(τ)‖ and τ > 0 are sufficiently small, which
guarantees that a stationary (not necessary minimal) solution to the discrete action principle
exist [31]. The latter condition basically requires that we cannot make arbitrary large deter-
ministic moves in space. However this does not affect the irreducibility property as we can
always reach distant points in space by multiple iterates of the HMC chain.

The proof of the irreducibility condition proceeds two steps: In a first step we follow
the approach in [10] and construct ambient-space sample paths that satisfy the irreducibility
condition in � ⊂ Q. In doing so, it turns out that the problem boils down to a standard
symplectic discretization of constrained systems. In a second step we demonstrate that the
ambient-space discretization has an equivalent formulation in local coordinates which is
consistent with the formulation of the invariant measure in the preceding paragraph.

For the ambient-space formulation we endeavour a discrete variant of Hamilton’s action
principle. Following [31], we introduce a discrete Langrangian as a map Lh : Q × Q → R.
The discrete counterpart of the continuous action integral is a mapping Sh : QN+1 → R, that
is defined as the sum

Sh =
N−1∑
k=0

Lh(qk, qk+1), (4.6)

where qk ∈ Q and k labels the discrete time. Given fixed endpoints q0, qN ∈ Q the discrete
variational principle states that the discretized equations of motion minimize the action sum.
The discretized equations are obtained by variation over the q1, . . . , qN−1 which yields the
discrete Euler-Lagrange equations

D2Lh(qk−1, qk) + D1Lh(qk, qk+1) = 0 ∀k ∈ {1, . . . ,N − 1}, (4.7)

where D1,D2 denote the derivatives with respect to the first and second slot. If D2Lh (the
generalized discrete momentum) is invertible, then (4.7) implicitly defines a discrete flow by
means of the map (qk+1, qk) = �h(qk, qk−1). The particular discretization scheme that leads
to (4.6) is open to choice and should depend on the problem; for the details we refer to the
seminal work of Marsden and West [31].
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Lemma 4.4 Suppose the potential V : Q → R is sufficiently smooth and uniformly bounded
from below. Given q0, qτ ∈ �, there is a symplectic mapping (q(τ ),p(τ)) = �τ(q(0),p(0))

and an open neighbourhood B ⊂ � of qτ , such that

P[q(τ) ∈ B |q(0) = q0] > 0.

Proof We set � = ϕ−1(0) for a regular value 0 of the smooth function ϕ : Q → R, and we
let the function L : T Q → R denote the continous Lagrangian

L(q, q̇) = 1

2
〈q̇, q̇〉 − V (q).

The discrete Lagrangian Lh : Q × Q → R for a time step h > 0 is chosen to be

Lh(qk, qk+1) = 1

2

(
L

(
qk+1,

qk+1 − qk

h

)
+ L

(
qk,

qk+1 − qk

h

))

giving rise to the augmented Lagrangian L̂h = Lh − λϕ. Fixing endpoints q0, qN ∈ � and
setting qN = qτ a stationary solution

δ

N−1∑
k=0

(Lh(qk+1, qk) − λkϕ(qk)) = 0,

of the unconstrained action sum exists for ‖q0 − qN‖ and τ being sufficiently small. Taking
the variation yields the discrete Euler-Lagrange equations [32]

0 = D2Lh(qk−1, qk) + D1Lh(qk, qk+1) + λk∇ϕ(qk),

0 = ϕ(qk)
(4.8)

for all k ∈ {1, . . . ,N − 1}. Given qk−1, qk ∈ �, i.e., ϕ(qk) = ϕ(qk−1) = 0, we can evaluate
the derivatives of the discrete Lagrangian Lh and solve the last equation for qk+1 subject to
the condition that qk+1 ∈ �. We find

qk+1 − 2qk + qk−1 = −h2(∇V (qk) + λk∇ϕ(qk)),

0 = ϕ(qk+1),
(4.9)

which is known as the SHAKE algorithm [33]. The Lagrange multiplier λk is chosen such as
to enforce the constraint at time k + 1. The conjugate momentum is defined by the discrete
Legendre transform of L̂h = Lh − λϕ, viz.,

pk = −D1Lh(qk, qk+1) + λk∇ϕ(qk). (4.10)

Hence we can rewrite the SHAKE algorithm as a symplectic mapping �h : (qk,pk) �→
(qk+1,pk+1). By choosing initial conditions q(0) = q0 and p(0) = −D1L̂h(q0, q1, λ0) the
discrete flow generates a discrete trajectory that connects q0 and qτ . Finally, it follows by
continuity of the numerical flow �τ on the initial conditions that the endpoints of trajec-
tories with perturbed initial momenta pε(0) = p(0) + ε remain in B ⊂ � whenever ε is
sufficiently small. �

A frequently used variant of the SHAKE algorithm is called RATTLE and goes
back to [34]. It can be considered as a constrained version of the ordinary velocity Verlet
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scheme. SHAKE and RATTLE are equivalent by dint of (4.10). Moreover they are varia-
tional with the discrete Lagrangian Lh defined above, and therefore both SHAKE and RAT-
TLE are symplectic (see also [35, 36]).

Lemma 4.4 guarantees accessibility from any point q ∈ � to any open set. However
condition (4.3) requires accessibility of any Borel set of positive Hausdorff measure (ir-
reducibility), which excludes certain pathologies that otherwise might occur in the HMC
transition probabilities. This is expressed in:

Lemma 4.5 Let �τ : T ∗� → T ∗� denote the symplectic numerical flow as defined by the
algorithm (4.9–4.10). The HMC transition probabilities obey

P[q(τ) ∈ B |q(0) = q0] > 0 ∀q ∈ � ⊂ Q

for all B ∈ B(�) with positive Hausdorff measure Hd on �.

Proof Given an initial point q ∈ �, we have to show that any Borel set B of positive measure
can be reached from a set of momenta with positive measure.

To this end consider the subset MB(q) ⊂ T ∗
q � that is determined by all initial momenta

p for which (π ◦ �τ)(q,p) ∈ B . Omitting the positive acceptance probability (4.4), the
transition probabilities p(q,B, τ) = P[q(τ) ∈ B |q(0) = q] can be written as

p(q,B, τ) =
∫

MB(q)

�q(q) dp.

Since the constrained Maxwell density �q(p) is strictly positive, it is enough to show that
MB(q) has positive measure. Since we can naturally identify all cotangent spaces T ∗

q � with
the d-dimensional subspaces of Rn that are determined by the hidden constraint ∇ϕ(q) ·
DpH(q,p) = 0, we have to show that MB(q) has positive d-dimensional Hausdorff measure
Hd . Now suppose the contrary, i.e., assume Hd(MB(q)) = 0, and consider the map Fq :
MB(q) → B, p �→ (π ◦ �τ)(q,p). By definition, Fq is onto and thus [37]

Hd(B) = Hd(Fq(MB(q))) ≤ LHd(MB(q)) = 0,

where 0 < L < ∞ is the Lipschitz constant of Fq (since �τ is volume-preserving, such a
constant obviously exists). If Hd(B) > 0, the last equation yields a contradiction, and the
assertion follows. �

We have carried out the proof of invariance of μ� in local coordinates (Lemma 4.2).
Hence it remains to show that the flow (qk,pk) → (qk+1,pk+1) has an equivalent counter-
part (xk, uk) �→ (xk+1, uk+1) in local coordinates. As we know from the continuous world,
the local coordinate version of the Euler-Lagrange equations can be derived from the re-
stricted Lagrangian L� = L|T � . Accordingly we define the constrained discrete Lagrangian
as L�,h = (L|T �)h. Given an embedding σ : Rd → � ⊂ Q we can define the constrained
discrete Lagrangian L�,h : � × � → R as the map

L�,h(xk, xk+1) = Lh(σ(xk), σ (xk+1)),

which gives rise to the following discrete Euler-Lagrange equations

0 = D2L�,h(xk−1, xk) + D1L�,h(xk, xk+1). (4.11)
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Solving the equation for xk+1 given xk, xk−1 defines a map �h : Rd → Rd . By computing the
conjugate momenta uk = −D1L�,h(xk, xk + 1) we can lift the iteration �h to a symplectic
map �h : T ∗Rd → T ∗Rd . We have:

Lemma 4.6 (Wendlandt & Marsden 1997) Equation (4.8) has a solution (qk+1, qk) =
�h(qk, qk−1), iff (xk+1, xk) = �h(xk, xk−1) is a solution of (4.11). Furthermore �h and �h

are equivalent in the sense that �h = σ ◦ �h.

This completes the proof that the HMC Markov chain with the RATTLE iteration
(4.9–4.10) is irreducible. Together with Lemma 4.2 stating the invariance of the constrained
Gibbs measure μ� we therefore conclude:

Proposition 4.7 Let {qk}k=0,τ,2τ,... be the Markov process that is defined by the RATTLE
iteration (4.9–4.10) with random initial momenta following the constrained Maxwell distri-
bution and an HMC acceptance-rejection procedure due to (4.4). Then for sufficiently small
τ > 0 the strong Law of Large Numbers,

1

N

N−1∑
i=0

f (qi) → E�f as N → ∞ (almost surely),

holds true for almost all initial values q0 ∈ �.

Note that the algorithm converges for any stable step-size without introducing a bias.
However the last assertion does not tell us anything about the speed of convergence, which
remains an open problem; see [10, 39] for some numerical studies. In particular the speed
of convergence depends upon the choice of the HMC integration time τ = Nh, where h

is the integration step-size. Exploring state space becomes certainly faster if τ is increased.
However increasing τ while keeping the step-size h constant decreases the acceptance prob-
ability as energy fluctuations become an issue.

Remark 4.8 As already mentioned the HMC algorithm with lag time τ = h but without the
acceptance-rejection procedure is equivalent to an Euler discretization of the Smoluchowski
equation (which does not preserve ergodicity). Letting the acceptance step account for the
discretization error, HMC can be regarded as an exact discretization of the Smoluchowski
equation at step-size τ = h. In this sense HMC generates an ergodic diffusion-like flow [11].
In point of fact, related results for constrained diffusion processes have recently become
available in the work of Lelièvre et al. [40]. Therein, however, the authors prove ergodicity
only for the time-continuous process, while disregarding discretization issues.

5 Algorithmic Issues and Examples

We briefly explain how the constrained hybrid Monte-Carlo algorithm can be used in mole-
cular applications. To this end, it is convenient to represent the equations of motion and
the invariant measure in terms of the ambient-space variable (q,p). We shall also drop the
assumption that the system has unit mass; if we let M ∈ Rn×n denote the symmetric and
positive-definite molecular mass matrix, the unconstrained Lagrangian becomes

L(q, v) = 1

2
〈Mv,v〉 − V (q).
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The respective unconstrained Hamiltonian thus reads

H(q,p) = 1

2
〈M−1p,p〉 + V (q).

Introducing the reaction coordinate constraint ϕ(q) = ξ , the constrained equations of motion
(3.1) are then generated by the augmented Lagrangian L̂ = L−λi(ϕi(q)− ξi). The SHAKE
discretization of the equations of motion for a time step h > 0 and multiple constraints
ϕ1, . . . , ϕs is

qn+1 − 2qn + qn−1 = −h2M−1(∇V (qn) + Dϕ(qn)
T λn),

ξ = ϕ(qn+1).
(5.1)

In the original formulation by Ryckaert et al. [33], the momentum is approximated as

pn = M

(
qn+1 − qn−1

h

)
. (5.2)

This approximation has two major drawbacks: Firstly, the mapping (qn,pn) �→ (qn+1,pn+1)

defined by (5.1–5.2) is not symplectic.1 Secondly, the three-term recursion in (5.1) may lead
to an accumulation of round-off errors. Therefore the scheme may become unstable, as has
been pointed out in [24]. A remedy for both problems is to make the iteration (5.1–5.2)
a variational integrator, replacing (5.2) by the correct discrete conjugate momentum (4.10).
This amounts to formulating SHAKE as the one-step RATTLE algorithm [34]

pn+1/2 = pn − h

2
(∇V (qn) + Dϕ(qn)

T λn),

qn+1 = qn + hM−1pn+1,

ξ = ϕ(qn+1), (5.3)

pn+1 = pn+1/2 − h

2
(∇V (qn+1) + Dϕ(qn+1)

T μn),

0 = Dϕ(qn+1)M
−1pn+1.

The Lagrange multipliers λn,μn are chosen, such that the two constraints are satisfied. The
RATTLE integrator (or SHAKE considered as a mapping T ∗� → T ∗�, respectively) is
symplectic as following from its variational nature; cf. the related works [35, 36].

Implicit Solvers and Stability Approximating expectation values by sufficiently long tra-
jectories poses the question of long-term stability of the integrator. For nonlinear constraints
both SHAKE and RATTLE are semi-implicit schemes, and their stability properties will de-
pend upon the choice of the nonlinear solver that is used. A convenient numerical scheme
for solving the implicit part �(qn+1) = ξ is provided by original SHAKE iteration [33]
which can be considered a nonlinear one-step Gauss-Seidel-Newton iteration for the lin-
earized constraints. As has been demonstrated in [41], the Gauss-Seidel-Newton iteration
is almost unconditionally stable for moderate step-sizes—even if the algebraic constraints

1The mapping preserves the Liouville volume though. However the thus defined flow is not a map T ∗� →
T ∗�, since the momenta do not satisfy the hidden constraint DϕM−1p = 0.
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are highly nonlinear. Moreover the iteration is remarkably fast (as compared to ordinary
Newton techniques) and can be combined with overrelaxation strategies. In contrast to that,
naïve Newton techniques may suffer from condition problems as has been pointed out on
various occasions, e.g., [42, 43]. An alternative method in this respect is the discrete null-
space method [43, 44] that proceeds by eliminating the Lagrange multiplier and which is in
the spirit of index reduction techniques. Since the method is variational as following from
the work of Maddocks et al. [45, 46], the ergodicity results of Sect. 4 should easily gener-
alize to the null-space method. A final remark is in order. For energy-conserving systems
penalty methods provide a useful alternative to the method of Lagrange multipliers as has
been argued in [47]. But what is useful in a microcanonical (i.e., non-Gibbsian) setting is
forbidden here: the Gibbs distribution of a constrained system is different from the one of a
penalized system in the limit of infinite penalization, and therefore the two methods are no
longer equivalent; we refer to [22, 48] for detailed considerations of penalization limits of
thermalized systems.

Constrained Maxwell Density in Ambient-Space Coordinates At each Monte-Carlo step
HMC requires that we draw an initial momentum from the constrained Maxwell distribution
which depends parametrically on the constrained position variables. This can be understood
as follows: consider the unconstrained kinetic energy in terms of the velocity variables,

T (v) = 1

2
〈Mv,v〉 := 1

2
〈v, v〉M,

where 〈·, ·〉M denotes the metric with respect to the positive-definite and symmetric mass
matrix M . As we have shown in Sect. 3.3 the constrained canonical probability distribution
is simply the restriction of the unconstrained distribution. In order to restrict the Maxwell
density to the constrained tangent space Tq�, q ∈ �, we define the M-orthogonal projection
PM,T : TqRn → Tq�

PM,T = 1 − M−1J T
ϕ (J T

ϕ M−1J T
ϕ )−1J T

ϕ , Jϕ = Dϕ(q)

that is defined point-wise for each q ∈ �. Strictly speaking, PM,T sends vectors v ∈ Rn to
vectors in ṽ ∈ Rn, such that ṽ satisfies the hidden constraint Dϕ · ṽ = 0. It can be readily
checked that (i) the matrix PM,T meets the idempotency property P 2

M,T = PM,T , and that (ii)
it is symmetric with respect to the mass-weighted scalar product 〈·, ·〉M . That is,

〈PM,T u, v〉M = 〈u,PM,T v〉M
for any two vectors u,v ∈ Rn. Hence PM,T is an orthogonal projection with respect to the
metric 〈·, ·〉M . Consequently, we shall refer to PM,T as M-orthogonal projection. Since PM,T

maps to the constrained velocity space, we obtain the restricted Maxwell density exp(−βT�)

by restricting the kinetic energy,

T�(q, v) := T (PM,T v) = 1

2
〈PM,T v, v〉M.

Defining K(p) = T (M−1p), the phase space analogue of T� is found to be

K�(q,p) := 1

2
〈P ∗

M,T p,p〉M−1 , P ∗
M,T = MPM,T M−1.
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Fig. 1 Glycine dipeptide in its
extended C5 conformation

It is easy to see that P ∗
M,T is idempotent and symmetric with respect to inner product

〈·, ·〉M−1 . Hence P ∗
M,T is the M−1-orthogonal projection onto the constrained momentum

space T ∗
q �. In other words, P ∗

M,T sends p ∈ Rn to p̃ ∈ Rn, such that p̃ satisfies the hid-
den constraint DϕM−1p̃ = 0. Omitting normalization, the constrained Maxwell distribution
reads

��(q,p) ∝ exp(−βK�(q,p)), K� = 1

2
〈P ∗

M,T p,p〉M−1 (5.4)

which is exactly the ambient-space analogue of the constrained density (3.5).
The easiest way to draw momenta from the constrained distribution (5.4) is to generate

a random vector p from the unconstrained Maxwell distribution exp(−βK(p)), and then
apply the projection P ∗

M,T . This then yields a vector p̃ = P ∗
M,T p that is distributed according

to (5.4). In this way the projection maintains the full dimensionality for the HMC algorithm,
and we can completely work in the ambient-space coordinates q and p.

The HMC Algorithm We summarize the considerations from Sect. 4 and the last few para-
graphs. Given an initial position q0 that satisfy the constraint ϕ(q0) = ξ , the constrained
hybrid Monte-Carlo algorithm proceeds as follows.

1. Draw a random vector due to the unconstrained momentum distribution

p ∼ exp(−βK(p)), K(p) = 1

2
〈M−1p,p〉.

2. Compute p0 = P ∗
M,T p, such that p0 satisfies the hidden constraint, where

P ∗
M,T = 1 − J T

ϕ (JϕM−1J T
ϕ )−1JϕM

−1, Jϕ = Dϕ(q0).

3. Propagate (q̃1, p̃1) = �τ(q0,p0), where �τ is the numerical flow up to time τ > 0, that
is defined by the RATTLE discretization (5.3).

4. Accept q1 = q̃1 with probability

r = min

(
1,

exp(−βH(q̃1, p̃1))

exp(−βH(q0,p0))

)
,

or reject, i.e., set q1 = q0. (Here H = K + V is the unconstrained Hamiltonian.)
5. Repeat.
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Fig. 2 Helmholtz free energy
F(φ,ψ) at T = 300 K

5.1 Numerical Test: Free Energy Calculation

We shall demonstrate the performance of the HMC scheme by a numerical example that is
nontrivial and still allows for some comparison with known results. One such instance is
the calculation of two-dimensional free energy profiles of a glycine dipeptide analogue in
vacuum along its central torsion angles (see Fig. 1). This model system is particularly suited
for our purposes as it is not too small in dimension and exhibits a certain point symmetry
we wish to recover in the free energy (i.e., in the sampled probability distribution). The
symmetry-preservation may then serve as a consistency test.

If we label the two central torsion angles of glycine by ϕ = (ϕ1, ϕ2), ϕ : Q → T2 ⊂ R2,
the Helmholtz free energy is defined as

F(φ,ψ) = −β−1 ln
∫

�

exp(−βV )(volJϕ)
−1 dσ, (5.5)

where

volJϕ(q) =
√

det Dϕ(q)Dϕ(q)T

is the generalized matrix volume of the rectangular matrix Jϕ = Dϕ ∈ R2×n, and � =
�φ,ψ ⊂ Q denotes the family of codimension-two submanifolds

�φ,ψ = {q ∈ Q |ϕ1(q) = φ, ϕ2(q) = ψ}.
Obviously, F(φ,ψ) is the marginal Gibbs density of the two torsion angles (φ,ψ). However
sampling the marginal distribution is a tedious issue, since the dynamics in this direction has
to overpass large energetic barriers and thus convergence is extremely slow.

In praxi sampling free energy profiles is therefore often carried out by constraining the
variables (ϕ1, ϕ2) and sampling the respective partial derivatives. Eventually the free en-
ergy can be recovered by numerical integration along (φ,ψ) from which the profile can
be eventually recovered by numerical integration. This technique is known by the name of
Thermodynamic Integration and goes back to Kirkwood [49]. Indeed, one can show [50]
that

F(φ,ψ) = G(φ,ψ) + β−1 ln E�(volJϕ)
−1, (5.6)
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Fig. 3 Glycine dipeptide in its
C7 conformation

where E� denotes the expectation with respect to the constrained Gibbs measure μ� . Here
G is the potential of mean constraint force, i.e.,

∇G(φ,ψ) = E�λ̄

with λ̄ = (λ̄1, λ̄2) as the momentum-averaged Lagrange multiplier [22]

λ̄ = (JϕM
−1J T

ϕ )−1(JϕM
−1∇V − β−1 tr(P ∗

M,T ∇2ϕM−1)),

where P ∗
M,T = 1 − J T

ϕ (JϕM
−1J T

ϕ )−1JϕM
−1 is the point-wise projection onto T ∗

q �, and the
rightmost term is understood component-wise for ϕ = (ϕ1, ϕ2).

In principle, one could even use the numerical Lagrange multiplier of the RATTLE
scheme. But the distribution of the numerical multiplier λn along the HMC trajectory is
determined by the distribution of (qn,pn), and we cannot be sure whether the momenta pn

are correctly sampled by the scheme. (We expect them to be close by though). Accordingly
we use the explicit expression for λ̄ instead of the RATTLE multiplier.

In order to compute the free energy, we perform Thermodynamic Integration in the Ra-
machandran plane (i.e., in the two angles (φ,ψ)) using the GROMOS96 force field of GRO-
MACS [51, 52] together with the native Java interface METAMACS [53]. Intriguingly, such
calculations are rare (e.g., [54]), although easy-to-use Thermodynamic Integration formulae
in more than one dimension have been put forward during the last few years (see also [55]
where a simplified force expression was used). We cover the Ramachandran plane with a
two-dimensional, uniform 36 × 36 grid, and run constrained hybrid Monte-Carlo simula-
tions at T = 300 K on each grid point (φi,ψj ). The step-size was chosen to be h = 1 fs with
100 integration steps between the Monte-Carlo points. Starting from an energy-minimized
configuration, each simulation involves N = 10 000 sample points, hence equivalently 1ns
of total integration time for each φ,ψ combination. Taking advantage of the reaction co-
ordinate’s periodicity, we reconstruct the smooth free energy surfaces by first expanding G

into a truncated, two-dimensional Fourier series [56] and then adding the correction accord-
ing to (5.6). The respective Fourier coefficients are determined from the averaged λ̄ in a
least-squares sense.

The result is shown in Fig. 2. The plot clearly reveals the so-called C7 conformation de-
picted in Fig. 3 at about (φ,ψ) = (±80◦,∓80◦). Moreover, but less clearly, we can see the
extended C5 conformation around (φ,ψ) = (±180◦,±150◦) which is about 5–10 kJ/mol
higher than the C7 conformation which agrees with the results obtained in [57] (for a differ-
ent force field though). For the sake of comparison the minimized potential energy function
projected onto the Ramachandran plane is shown in Fig. 4. The most noticeable difference
is that the energy barriers of the strongly repulsive O-O ring-like state at φ = 0◦ and the H-H
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Fig. 4 Minimized potential
energy landscape of the backbone
angles

ring-like state at ψ = 0◦ are far more pronounced than in the free energy landscapes. Fur-
thermore we recognize that the sampled free energy landscape is exactly point symmetric
around the origin as could be expected from the molecules symmetry under parity transfor-
mations (φ,ψ) �→ (−φ,−ψ). Latter property may be considered as numerical evidence for
the symmetry of the underlying constrained Gibbs distribution.

5.2 Related Problems

The calculation of free energy profiles is just one possible application for sampling of the
constrained Gibbs measure. Yet another example is a rigid body at constant temperature
that is parametrized in terms of quaternions [21]. Other examples of molecular dynamics
applications involve best-approximations [22, 58] or averaging techniques [59] for systems
with slow and fast degrees of freedom that typically assume the form

φ̇ε(t) = f (φε(t), zε(t)),

εżε(t) = g(φε(t), zε(t)), 0 < ε � 1.
(5.7)

The scalar ε > 0 is a small parameter that indicates the time scale separation between the
slow and fast variables φ and z. Given that certain technical conditions are met, the slow
subsystem can be described by a closed equation,

ξ̇ (t) = f̄ (ξ(t)), f̄ (ξ) =
∫

f (ξ, z)μξ (dz),

that approximates the slow dynamics in the limit ε → 0. Here μξ(dz) denotes the invariant
measure that is sampled by the fast process

żξ (t) = g(ξ, zξ (t))

and which depends parametrically on the value ξ of the slow variable φ. For example,
if the system describes diffusion in a potential energy landscape (gradient flow), then
μξ(dz) ∝ exp(−βV (ξ, z)) dσ (z) will typically be the Gibbs measure conditioned by the
slow variable. In this case we can sample the averaged vector field f̄ = E�f by running the
HMC algorithm with the constraint φ = ξ .
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Very similar in spirit are so-called equation-free approaches [60, 61]. The idea of
equation-free calculations allows for computing the effective drift of certain coarse (macro-
scopic) variables without explicitly splitting the equations of motion as in (5.7). The effec-
tive drift is estimated by averaging over short runs of an ensemble of microstates condi-
tional on the coarse variable. Other than in the constrained sampling procedure the coarse
variables are not constrained, but it is assumed that they do not move on a time scale that is
below the correlation time of the microscopic variables. This assumption is certainly met if,
e.g., the microscopic variables are much faster than the coarse variables. Moreover it often
suffices to collect only local information from a short propagation of the micro-ensemble
rather than sampling the exact conditional expectation with a very long constrained trajec-
tory which renders the equation-free method very efficient. However, the computed average
will heavily depend on how the conditional ensemble of microstates is initialized, and a
clever choice will certainly involve knowledge about the invariant probability measure of
the micro-dynamics. For example, if the original system is Hamiltonian one can use short
realizations of the constrained HMC Markov process to generate a particular ensemble,
namely, the Gibbs ensemble.

Remark 5.1 Both best-approximations (e.g., averaging) and equation-free approaches yield
effective models for the dynamics of the coarse variables. However it is important to note
that, in general, the effective dynamics is not governed by the coarse variable’s free en-
ergy, although the free energy is frequently called the potential of mean force. In fact the
Helmholtz free energy F reflects an asymptotic equilibrium property of the coarse variables
in the sense that their probability distribution will eventually approach ρ ∝ exp(−βF).
Nonetheless the free energy F does not give rise to a force in any physically meaningful
way, since its derivative ∇F does not transform as a 1-form under changes of the coarse
variables which can be easily inferred from the formulae (5.5) or (5.6); we refer to [22, 50]
for a detailed discussion.

Further notice that the free energy is clearly a meaningful equilibrium quantity, no mat-
ter if the coarse variables are slow variables or not (as compared to the remaining ones);
the proposed sampling method does not presuppose any kind of time scale separation as the
coarse variables are artificially fixed by the constraint, while the remaining variables are al-
lowed to sample their Gibbs distribution. Hence the constrained sampling method seems al-
ways appropriate when it comes to an accurate estimation of observables in thermodynamic
equilibrium at constant temperature, whereas on-the-fly methods such as the equation-free
approach seem better suited to consider nonequilibrium processes.
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